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Abstract

The present computational study illustrates how the existence of a residual lower limit on the variance of the skeleton and through-pore siz
of monolithic columns can be expected to severely compromise the possibility to prepare well-performing small domain monolithic columns.
Adopting rather conservative estimates for the minimal standard deviation on the pore and the skeleton size (0.2.emddspdctively),
the presented calculations show that, if such a fixed lower limit on the size variance exists, it will be impossible to decfeteatband
broadening below a given critical value, no matter how small the domain size is made. From a given critical domain size value on, any attemp
to further decrease the domain size without being able to co-reduce the size variance can be expected to be counterproductive and leads to
increase instead of to a further decrease of the plate heights.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction plate numbers, this gainisirrevocably obtained at the expense
of an increased analysis time. If operated near their opti-
When designing a chromatographic system, each possi-mal velocity, the current generation of large external poros-
bility to reduce the flow resistance (for example by switching ity capillary monolithic columns with for exampltiy =2 um
from a packed bed to a monolithic column fornBR]) or to anddgom=10pm can yield approximately 36,000 plates in
increase the available pressure grad[8m] should prefer- 12 min in columns with. =45 cm, whilst only using an inlet
entially be exploited by decreasing the size of its unit build- pressure of 3 bgdb]. To exploit the unused available pressure
ing block (particle size for a packed bed system and domain capacity, which is typically of the order of 200—400 bar in a
size [2] for monolithic columns). The accompanying plate commercial LC system, columns with alength of for example
height decrease then always results in faster and/or better250 cm could be us€l@], yielding over 200,000 plates near
separations. Smaller plate heights yield larger plate numberstheir ugpt. This would then however require roughly 1 h of
for a given column length or, if a given plate number is to analysistime. Even columns with alength of 10 m, potentially
be achieved, smaller plate heights allow to reduce the col- yielding over one million plates, can be envisioriéll This
umn length and the accompanying analysis time. Although would of course constitute an unprecedented performance,
the other possible approach to benefit from a reduced flow but many applications in LC do not require this large number
resistance, i.e., maintaining the particle or domain size andof theoretical plates, and are certainly not served by the in-
increasing the length of the column, also yields increased creased analysis time (roughly 10—-20 h for the 10 m column).
A much broader and economically more relevant field of ap-
* Corresponding author. Tel.: +32 2 629 36 17; fax: +32 2 629 3248, plication would be opened if the high porosity columns used
E-mail addressjbillen@vub.ac.be (J. Billen). in [5] could be prepared with a smaller domain and skeleton
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size. Assuming for the sake of simplicity a 10-fold reduc- 80%) for example have the same pore to skeleton size ratio
tion of the skeleton and domain size, and assuming that theof dpo/ds=2.0 and the same domain to skeleton size ratio
plate heights would scale proportionally to the characteristic dyon/ds= 3.0, despite of a significant difference in domain
mass transfer distances as is the case for properly packed bedsize @gom=4.2pm anddgom= 3 M, respectively).
(minimal plate height is directly proportional to the diameter As explained by GiddingEL1], it is one of the character-
of the employed particle8,9]), the above cited number of istic features of self-similar chromatographic support struc-
N=36,000 plates could be achieved in a 10 times shorter col-tures that they yield identical reduced plate height curves
umn and in a 100 times shorter time, i.e., slightly over 1 min. provided the reduction is based on one of the characteris-
Such a performance would be truly unprecedented and wouldtic dimensions expressing the self-similarity of the structure.
for example have tremendous advantages in high-throughputThe reason for this perfect reducibility is that the band broad-
applications or in the second dimension of 2D LC systems. ening in any chromatographic system is always determined
The above reasoning explains why the developers of by the same set of differential mass and impulse balances and
monolithic columns are pushing towards the synthesis of boundary condition equatiorf$2]. Making these equations
columns with ever smaller domain siZ€§. These attempts  dimensionless by dividing the spatial coordinates by one of
have up to now however been rather disappoin{2®). the reference lengths, the ensuing equations only depend on
Comparing the domain size reduced plate heights of mono-a number of dimensionless parameters, the two most impor-
liths with a similar porosity always turned out in favour of tantof them being the Reynolds numbRg(and the Schmidt
the large domain monoliths, i.e., the produced small domain number §9. Both parameters furthermore always appear as
monoliths do not yield the same linear reduction of the plate their product, which is nothing else but the Peclet number
heights as generally observed in packed bed columns. (Pe) or the reduced velocity (Pe=v=ReSq. Other param-
Although there is an ongoing debate on which characteris- eters appearing in the dimensionless equations are the ratio
tic dimension should be selected to properly reduce the plateof the stationary and the mobile zone diffusion coefficient
heights of silica monolith§], the fact that the domain size  (Ds/Dmoi) and a number of geometric ratios. In the case of
reduced plate heights of small domain monoliths are nearly self-similar packings, these geometric ratios are condition-
always larger than those of large domain monolj#tjss an ally the same, implying that if the dimensionless mass and
irrefutable indication that small domain monoliths are more impulse balance equations are solved for two members of
heterogeneous than their large domain counterparts. To unthe same group of self-similar structures and for the same
derstand this, it is first important to note that, at least on the the obtained solution for the passage of the eluting bands at
macroscopic level, silica monoliths with a different scale but a given dimensionless axial distance will be the same. The
with a similar porosity can be considered to be self-similar. (dimensionless) second order momest€) of these peaks,
Self-similar structures are structures which can be made toas well as the dimensionless plate heighthich is nothing
perfectly overlap in a thought experiment by only varying else but the dimensionless axial gradient8f(h = do"2/9x),
their scale. As a consequence, structures can only be selfwill hence also be identical.
similar if they have the same ratio between the characteristic  Returning now to the above mentioned observation that
dimensions describing their structure. The two characteris- monoliths with similadper/dgom andds/dgom-ratio and poros-
tic dimensions defining the structure of silica monoliths with ity yield reduced plate height curves which tend to increase if
a similar branch coordination number are the thickness andthe scale of their unit building block (i.e., the domain size) be-
the length of the skeleton branchg®]. These are in turn ~ comes smaller, it can only be concluded that these structures
related to the pore size and the domain size, usually definedare not as self-similar as their near-identical avedag@éddom
as the sum of the pore size and the skeleton branch thick-andds/dgom-ratios would make one to believe. Since the ra-
ness[2], two other parameters generally used to describe tios of the averaged characteristic dimensions suggest perfect
the geometry of a monolith. Considering now for example self-similarity, the lack of agreement must be related to differ-
the silica rod columns with a near identical external porosity ences in the variance around these averages, bringing in the
of £=0.61-0.63 reported upon [2], it is found that they argument on the differences in pore network homogeneity, as
have near constant pore to skeleton size ratios of respectivelyhas for example already been remarke{Ri,9].
2.43,2.31, 2.30 and 2.31 whilst their domain size variesfrom  In the present study, it is assumed that this increased
dgom=5.88um, overdygom=3.85um anddgom=2.97um to heterogeneity is caused by the existence of a domain size-
ddom=2.27pm. Since the domain size is the sum of the pore independent lower limit on the variance of the size of the in-
and skeleton size, it is obvious to find that the ratios of the dividual skeleton branches and through pores. It is assumed
domain to pore size and the domain to skeleton size are alsahat this variance does not scale down in proportion to the
nearly perfectly constant over the entire range of domain characteristic dimensions of the packing, but instead dis-
sizes. In fact they all lie between 1.70 and 1.77 and betweenplays a non-zero lower limit, brought about by local differ-
2.43 and 2.29, respectively. A similar domain size indepen- ences in the spinodal decomposition process, and impossi-
dence of the geometrical ratios is observed for the capillary ble to surpass by shrinking the scale of the packing. Study-
silica monoliths reported on ifb], where columns MS-B  ing SEM pictures of silica monolith columns, it seems cur-
and MS-D (both with an assumed external porosity of about rently impossible to produce silica monoliths with skeleton
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branches having a thickness and position variance smaller2. Considered geometries and numerical methods
than a few tenths of a micrometer. On a large domain system
(dgom>10pm), a size and position variability of this order As the starting point for the present study, five perfectly
only has a negligible influence on the packing homogene- ordered 2D cylinder arrays (cf. the grey coloured cylinder
ity, but on a small domain system, the same size variancearrays inFig. 1) with a different domain size but with the
can be expected to have a detrimental effect on the structuralsame external porosity (i.es=0.6) have been established.
homogeneity. The arrays were drawn using the commercial CAD-software
A similar non-zero lower limit variance effect can also be package Gamiit accompanying the Fluehisolver used to
expected to eventually limit the performance of lithographi- calculate the velocity fields and the tracer dispersion, as dis-
cally etched COMOSH 3,14]or porous pillar array columns  cussed below. The arrays were constructed by first drawing
[15,16] because even the most advanced current etching pro-an equilateral triangular grid and by subsequently putting a
cesses do not offer a perfect pillar size and position accuracy.cylinder on each grid point. As can be noted frbig. 1A, the
The same effect can probably also be used to explain theside of the equilateral triangle unit cell of this grid is the obvi-
apparent difficulties in preparing 1 o2n particle packed  ous measure for the domain size, for it corresponds to the sum
bed columns yielding the same small reduced plate heightsof the cylinder diameter and the pore neck size, which is the
as a well-packed 1@am particle bed column, although here now generally accepted definitifi?] of the domain size inthe
packing efficiency problems also certainly come into play. If monolithic column field. Making a few simple geometrical
a particle synthesis process is used wherein the diameter oftalculations, it can easily be verified that the adopted design
the particles can be controlled to withir0.1um, this gives rules lead to the following fixed ratio between the domain
a size variability of 2% foid. = 10um particles but already  and the cylinder size:
corresponds to a variability of 20% fog =1 um particles.
Plate heightincreases caused by the existence of alower limitdgom 1 2
size variance barrier can also be expected to influence the 4, ~ 2 m @
down-scaling of the packed bed columns used in CEC sepa-
rations, since in this case the obtained plate heights are alsdrl'he value of this ratio is independent of the geometrical scale,
still largely determined by packing heterogeneifies, 18] and only depends on the value of the external porosity. Putting
Obviously, it might very well be that in practice this lower ¢=0.6 in Eq.(1), it can easily be verified that the equilateral
limit size variance barrier does not show up as a sharply de-triangular staggering always yields an external porosity of
limited value but rather manifests itself over a broad transition ¢ =0.6 provided the cylinder diameter is exactly 1.5057 times
range, depending on the synthesis process and the domaismaller than the domain size (see ordedigdanddgom-data
size. The present work should therefore be considered morein Table ). This rule was applied to all considered arrays.
as a “what if?"-study and an attempt to visualize the diffi- All flow domains consisted of 126 particles and were 6
culties one could run into if attempting to further reduce the particles wide by 21 particles long. The reader should note
domain size of monoliths without finding a solution to reduce that, although the flow domains kig. 1was rescaled to the
the size variances. To answer this “what if?"-question, a com- same domain size, the simulations were carried out on flow
putational study has been conducted wherein a series of apdomains corresponding to the nominal domain size. For ex-
parently self-similar structures (i.e., with near equal averaged ample, the length and the width of the flow domain in the
size ratios) with varying domain size is subjected to a fixed, dgom=6pm-case were exactly six times larger than in the
domain size-independent particle size and position variance.dgom= 1 wm-case (se€able 1for all employedd;- anddgom-
To isolate this size variability effect, nonporous structures values). The representation in the constant domain size for-
are considered, as it is generally accepted that the packingmat adopted irig. 1 has been preferred over the actually
heterogeneity mainly influences ti#eterm band broaden-  used constant cylinder size format because it yields a more
ing and does not influence the stationary zone diffusion and compact representation. It also immediately shows that the
adsorption effects. For a qualitative description of the effect established ordered arrays are perfectly self-similar, i.e., they
under study, it is also not needed to consider 3D systems.perfectly overlap when brought to the same scale.
Certainly some typical 3D shape effects will be missed out  In a second step, a series of five heterogeneous arrays
by resorting to a 2D lay-out, but since the band broadening in (cf. black coloured cylinder arrays irig. 1) has been con-
each chromatographic process can be reduced to a problem oftructed by subjecting the position and the diameter of the
a series-parallel connection of different velocity zofiey, individual cylinders of the ordered arrays to a random varia-
the general qualitative result of the present 2D study can betion, using the evenly distributed random number generator
expected to hold independently of the dimension of the prob- of MS® Excell to define the new position and diameter of
lem. Studying 2D systems has the advantage that they yield ahe individual cylinders. The absolute value of the variance
more direct visual insight and allow for a more simple deter- on the centre position and the diameter of each cylinder was
mination of the size variability parameters. In addition, the identical in all different domain size cases. In all cases, the
2D approach requires only a fraction of the computational maximal displacement of the cylinder centre was plus or mi-
time needed for a 3D system. nus 0.302wm in both thex-direction andy-direction. The
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Fig. 1. Overlay plot of the considered 2D cylinder arrays (grey circles: perfectly ordered arrays; black circles: heterogeneous arrays)eecaleé tamain
size. The equilateral triangular starting grid used to calculate the position of the cylinders in the ordered array cases is represented d#ferdhtdeenain
sizes have been consideréggm=6 nm (A), dgom=4pm (B), dgom=2pm (C),dgom=1.5pnm (D), dgom= 1 uwm (E). The absolute variance on the position and
the size of the individual cylinders is identical in all four cases (see text for more details).

random number generator randomly picked any of the pos-in this way, it is ensured that the average domain size of
sible values lying between the two extreme values with an each heterogeneous array will still be very close to the do-
equal probability. The diameter of the cylinders was in all main size of its corresponding ordered array and that the

domain size cases varied in an interval of 0.83 around size and position variances are independent of the domain
the mean particle diameter. Introducing the heterogeneity size.

Table 1
Domain, cylinder diameter and pore size values for the five different considered domain sizes
Domain size gm) Ordered arrays Heterogeneous arrays

de (nm) dpor (M) de (£0) (um) por (£0) (M) ddom (£0) (m)
1 0.664 0.336 0.6624(0.078) 0.36140.211) 1.02340.225)
15 0.996 0.504 0.994+0.078) 0.50840.208) 1.50240.222)
2 1.328 0.672 1.326#0.078) 0.67440.217) 2.00040.231)
4 2.657 1.344 2.65440.078) 1.33040.212) 3.9844£0.226)
6 3.985 2.015 3.9824(0.078) 2.00840.206) 5.99040.220)

The values given for the heterogeneous arrays are the average values calculated from the measured size distributions. The numbers betweethérackets a
standard deviations.
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The numerical methods used to compute the flow field and tions on jpg-file reproductions of the flow domains in Adobe
the species dispersion, as well as the methods employed tdPhotoshof. The lengths of the individual lines were subse-
calculate the plate height values from the recorded peak pro-quently determined using Imaq Vision Builder 5.0 software,
files are fully identical to those described in previous papers directly providing the desired length distribution in an output
of our group[10,15,19,20]and are therefore not recaptured file. In this way, the pore sizes are determined in a manner
here. We will suffice by remarking that a commercial Com- which is fully similar as to one would do when analysing a
putational Fluid Dynamics solver has been used (FRient SEM picture of areal monolithic column. The distributions of
6.1.22, Fluent NV, Belgium) and that the accuracy of all pre- the (exactly known) cylinder diameters could be established
sented calculations has been checked by varying the time steglirectly from the M® Excell file used to generate them.
and the grid size.

To quantify the degree of packing heterogeneity of the dif-
ferent systems, distributions of the pore neck size (measured3. Results and discussions
as the shortest distance between two neighbouring cylinders)
and the cylinder diameter have been established. For the A comparison of the grey and black coloured cylinder ar-
pore size distribution, 100 different shortest distance lines rays inFig. 1directly allows to appreciate the strong increase
were drawn between two adjacent cylinders in random direc- in packing heterogeneity which follows upon a decrease of

Fig. 2. Computed velocity fields in a perfectly ordered array (A) and in the five differently sized heterogeneous arrays (B—F). All cases have tlam same me
linear velocity. The colour scaling is proportional to the log&iyearvalue, withuneandefined as the largest local velocity encountered in the given domain
(see text for colour details).
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the domain size in the presence of a domain size indepen-erogeneous arrays with the smallest domain st €D—F)

dent lower limit on the cylinder size and position variance. is divided in only a few preferential flow paths where the ve-
The increased heterogeneity of the small domain structureslocity is much larger than in the remainder of the packing.
is also clearly reflected in the calculated pore and cylinder The presence of these preferential flow paths in turn obvi-
size standard deviation valuéable J). Whereas in absolute  ously has a dramatic impact on the band broadening, as can
values these standard deviations are nearly perfectly identicaklearly be assessed frafig. 3.

in all five considered domain size cases (as could be expected Quantifying the band broadening in all different consid-
from the rules used to establish the heterogeneous arrays), irered ordered and heterogeneous array cases by calculating the
relative terms, this standard deviation goes from a relatively corresponding plate heights over a range of different veloci-
small 1.96% (for the cylinder size) and 10.26% (for the pore ties yields the series of van Deemter curves showFign 4.

size) in the um domain case to respectively 11.78% and For the ordered array cases (dashed curves), the normal be-
58.45% in the Jum domain caselable lalso shows an ex-  haviour of self-similar systemsis noted, i.e., the minimal plate
cellent agreement between the domain sizes of the perfectlyheights decrease linearly with the domain or cylinder size.
ordered arrays and those of the heterogeneous arrays. Sinc€&he difference with the van Deemter curves for the heteroge-
the perfectly ordered arrays are perfectly self-similar, the het- neous arrays (full lines) is striking. Not only do the curves lie
erogeneous arrays could, if the qualification would be basedsignificantly higher, the lowest plate height curve no longer
on the average characteristic dimensions (as is usually done)corresponds to the packing with the smallest domain size
hence also be considered to be self-similar. but to one with an intermediate value, i.e., wiklym =2 um.

The velocity fields for the different heterogeneous arrays This result implies that any manufacturing method produc-
are however not self-similar at aig. 2). To emphasize the ing a residual, domain-size independent minimal size and
differences between the different scale-structures, the com-position variance will be marked by the existence of a lower
puted velocity magnitude fields have been normalized to the plate height limit which cannot be passed by decreasing the
mean local velocity magnitude (which was anyway identical domain size of the packing structure.
in all the represented cases) and the colour scale was fixed In Fig. 5 the van Deemter curves shown kig. 4 are
betweenu/Umnean=0 anduwumean=4. In this way, the zones reconsidered in dimensionless coordinates. Whereas the or-
with the largest velocities are marked red and yellow (roughly dered array cases all reduce to the same curve (dashed line),
u> 3umean, Whereas the zones with the smallest velocities are in agreement with their perfect self-similarity, the heteroge-
marked blue (roughly <umead5). Going fromFig. 2A-F, it neous array cases clearly deviate from this “perfect standard”
can readily be noted that, whereas all flow through pores in curve, although they all have the same ratios between their
the perfectly ordered and the largest domain heterogeneousaverage characteristic dimensions. The cases with the small-
array Fig. 2A and B) have a nearly identical status and are est domain size, i.e., the cases with the largest heterogeneity,
permeated with the same intensity, the flow through the het- clearly yield the largest deviation. The usedgf-reduced
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Fig. 3. Plot of a species plug shortly after its introduction at the inlet of the flow domain for the perfectly ordered array case (A) and for threféeoéttie di
heterogeneous cylinder arraylom=6um (B), dgom=2pm (C), dgom=1pm (D).
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Fig. 4. van Deemter plots of the plate heights calculated for the five consid-
ered domain sizesl{om=6um (@), 4pm (), 2pm (¢), 1.5um (A), Lpm

(x)) in the ordered (dashed lines) and the heterogeneous array cases (full, — AU1/3

lines).

plate heights hence yields a very sensitive means to asses
the degree of heterogeneity of a given packing. The largest

domain size case, wherein the presence of size variance i
nearly invisible to the eye, also already yields a deviation
from the perfectly ordered array curve.

It should be noted that the plate height values in
Figs. 4 and Sonly relate to theA- and B-term band broad-
ening, and that in real porous columns the small domain
monolith heterogeneity effect will be tempered (but not elim-
inated!) by the band broadening contributions stemming from
the stationary zone mass transfer resistance. It can, howeve
be inferred from the additive effect of the different band
broadening contributiongl1] that the main conclusion of
Figs. 4 and @lso holds for porous structures.

Another remark to be made, is that the present results

are for a system with an external porosity ©f 0.6, cor-
responding roughly to the external porosity in commercial
wide-bore silica monolith columns. It is obvious that, if the
same fixed minimal skeleton size and position variance would
prevail, packings with a smaller porosity (i.e.<0.6) will

Fig.5. Reduced plate height curves based@p (same symbols as Fig. 4.
The fulland dashed lines are obtained by fitting &) to the computed plate
height data.

I
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Table 2
Knox parameters obtained after fitting the domain size reduced plate height
data shown irFig. 5to Eq.(2)

Domain size gm) A(-) B(-) C(H)

1 0.381 1.333 0

15 0.196 1.388 0

2 0.119 1.396 0

4 0.050 1.466 0

6 0.031 1.530 2.0410°6
Uniform arrays 0.015 1.505 7.8010e™°

display an even strongérterm band broadening than in the
present case, whereas packings with a larger porosity (say
¢=0.8-0.9) would be less affected.
Fitting the reduced plate height curves showrFig. 5
with the frequently used empirical Knox-equation:
B
+ m +Cv 2
it is found that the increased heterogeneity of the small do-
Fhain structures is mainly reflected in theerm band broad-
ening (cf.Table 2, as could be expected from the physical

Smeaning of the lattef9]. Going from the perfectly ordered

array case, wherg=0.015, to the maximally heterogeneous
case withdyom=1pm, whereA=0.38, a near 25-fold in-
crease inthé-term band broadening is observed. Baerm
constant values vary much less, and@erm constant val-
ues are so small compared to #derm contribution that in
most cases this value had to be fixed to zero in order to prevent
the fitting algorithm to produce physically unfeasible nega-
tive C-values. The poor fitting for the smallest domain size
cases reflects the fact that the 1/3 Knox-equation only has
empirical grounds. Fittings with free yielded much better
fittings, but since the exponentvaried in a rather random
manner from case to case we preferred to stick toithé/3
model.

Fig. 6shows a plot of thé-term constant and the relative
domain size variancef,,/d>,,,) as afunction of the domain
size forthe different heterogeneous array cases. Both linesrun
nearly parallel, indicating atight link between both quantities.
In both cases, a vertical asymptote is reached for a domain
size just belowdgom=1wm. It is thought that making this
type of plots, i.e., plotting eithek versusdgom or 03,,./d3.

0.45 0.05
0.4 . 0.045
0.35 0.04
0.3 0.035
0.25 002 (Gdom/daom)?
A 0.025 (
0.2 )
) 0.02
0.15 0.015
0.1 0.01
0.05 : 0.005
0 : 0
0 1 2 3 4 5 6 7

ddom 0}

Fig. 6. Dependency of th&-term constantll) and ¢ dom/ddom)? (@) on the
domain sizedgom.
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versusdyom for a series of columns produced with a similar as a function of the experimental conditions (duration and
method but with different domain size, could be very useful intensity of the reagent mixing, temperature control) will

to determine the presence of a lower limit size variance bar- undoubtedly give clues on how the current monolith manu-
rier. Ianndagom/dgom would remain more or less constant, facturing methods could be improved. For this purpose, mi-
this would indicate that the size variance decreases togethercroscopic visualization methods, like for example the laser
with the domain size, allowing to conclude that the employed scanning confocal microscopy (LSCM) method proposed in
synthesis method does not have a fixed variance size barrier[21], will become indispensable research tools. Introducing
On the other hand, i4\anda§0m/d§0mwould display asharp  more vigorous mixing methods such as ultrasd@i2] or
increase, this would then be a clear indication of the exis- chaotic advectiofi23] mixing in microfluidic channels pro-
tence of a lower limit size variance barrier. It can however be ducing the smallest possible mixing eddies could be one of

expected that the7 . /d3,values will reach a maximum

the possible solutions to improve the size variability of small

2 02 1 g i i i
aroundo, /d4. = 1, since this represents the case where domain monoliths.

the standard deviation is as large as the domain size. From
the tight link betweer ando?,./d2, ., it suffices of course

to measure only one of both parameters. The determination5. Nomenclature

of A, requiring only a fit of the van Deemter data with Eq.
(2) obviously is much easier than the determination@ﬂ

which requires the use of some optical scanning technique inA, B, C Knox equation constants (-)

combination with a geometrical reconstruction routine. The dc
latter method can however be assumed to be more accurat@ldom

than theA-term constant fitting method. dpor
dref
ds
DmoI
4. Conclusions
Ds:

Given that the pore and skeleton size variance in mono-
lithic columns is directly related to the stochastic nature of h
the spinodal decomposition process, it is not unreasonable toH
assume that this variance will not scale down in proportion L
with the domain size, but will, from a given domain size on, N
remain at a given non-zero level, independently of the domain Pe
size. Computing thA-term band broadening in a seriesofap- Re
parently self-similar structures (same mean geometric ratiosSc
and same porosity) with decreasing scale, the present comu
putational study shows that the existence of such a minimal ug
size variance barrier will lead to a lower limit van Deemter
curve and that any attempt to pass this lower limit by fur- Umnean
ther decreasing the domain and skeleton size without beinguopt
able to co-reduce the size variance will inevitably result in
an increase instead of a further decrease of the plate heightsx’:
Although the existence of such a lower limit on the size vari-
ance has not been investigated yet, the concept can be used

cylinder diameter (m)

domain size, sekig. 1(m)

pore size (M)

general characteristic dimension (m)

skeleton diameter (m)

molecular diffusion coefficient in mobile zone
(m@/s)

molecular diffusion coefficient in stationary zone
(m@/s)

reduced theoretical plate heighit= H/def)

height equivalent of a theoretical plate (m)

length op the separation column (m)

number of plates

Peclet number

Reynolds numbeRe= u-dief/Dmoil (-)

Schmidt numberSc=n/Dmol (-)

local interstitial mobile phase velocity (m/s)

mean velocity of permeating, but non-retained so-
lute (m/s)

mean interstitial mobile phase velocity (m/s)
optimal mean interstitial mobile phase velocity
(m/s)

axial distance in the column divided by reference
dimension (-)

to understand the major difficulties encountered when trying Greek symbols

to synthesize high performance small domain monoliths. ¢
The present results indicate that the key to obtain- n
ing high quality small domain size monoliths (say with v
1 pm <dyom< 3pm) will lie in the ability to reduce the stan- o
dard deviation on the size and the position of the skeleton opor
branches to below 04m or even 0.0.m and that extensive
studies of the relationship between the exact process condi-

/2

external column porosity (-)

kinematic viscosity (rf/s)

reduced fluid velocity, based ag (=up-d4om/Dm)
dimensionless second order moment (-)
standard deviation on the pore size (m)
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