
Journal of Chromatography A, 1077 (2005) 28–36

A first principles explanation for the experimentally observed increase in
A-term band broadening in small domain silica monoliths and other

chromatographic supports
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Abstract

The present computational study illustrates how the existence of a residual lower limit on the variance of the skeleton and through-pore size
of monolithic columns can be expected to severely compromise the possibility to prepare well-performing small domain monolithic columns.
Adopting rather conservative estimates for the minimal standard deviation on the pore and the skeleton size (0.2 and 0.04�m, respectively),
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he presented calculations show that, if such a fixed lower limit on the size variance exists, it will be impossible to decrease theA-term band
roadening below a given critical value, no matter how small the domain size is made. From a given critical domain size value on, a

o further decrease the domain size without being able to co-reduce the size variance can be expected to be counterproductive an
ncrease instead of to a further decrease of the plate heights.

2005 Elsevier B.V. All rights reserved.
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. Introduction

When designing a chromatographic system, each possi-
ility to reduce the flow resistance (for example by switching

rom a packed bed to a monolithic column format[1,2]) or to
ncrease the available pressure gradient[3,4] should prefer-
ntially be exploited by decreasing the size of its unit build-

ng block (particle size for a packed bed system and domain
ize [2] for monolithic columns). The accompanying plate
eight decrease then always results in faster and/or better
eparations. Smaller plate heights yield larger plate numbers
or a given column length or, if a given plate number is to
e achieved, smaller plate heights allow to reduce the col-
mn length and the accompanying analysis time. Although

he other possible approach to benefit from a reduced flow
esistance, i.e., maintaining the particle or domain size and
ncreasing the lengthL of the column, also yields increased

∗ Corresponding author. Tel.: +32 2 629 36 17; fax: +32 2 629 32 48.
E-mail address:jbillen@vub.ac.be (J. Billen).

plate numbers, this gain is irrevocably obtained at the exp
of an increased analysis time. If operated near their
mal velocity, the current generation of large external po
ity capillary monolithic columns with for exampleds = 2�m
andddom= 10�m can yield approximately 36,000 plates
12 min in columns withL= 45 cm, whilst only using an inle
pressure of 3 bar[5]. To exploit the unused available press
capacity, which is typically of the order of 200–400 bar
commercial LC system, columns with a length of for exam
250 cm could be used[6], yielding over 200,000 plates ne
their uopt. This would then however require roughly 1 h
analysis time. Even columns with a length of 10 m, potent
yielding over one million plates, can be envisioned[7]. This
would of course constitute an unprecedented perform
but many applications in LC do not require this large num
of theoretical plates, and are certainly not served by th
creased analysis time (roughly 10–20 h for the 10 m colu
A much broader and economically more relevant field of
plication would be opened if the high porosity columns u
in [5] could be prepared with a smaller domain and skel
021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2005.04.080
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size. Assuming for the sake of simplicity a 10-fold reduc-
tion of the skeleton and domain size, and assuming that the
plate heights would scale proportionally to the characteristic
mass transfer distances as is the case for properly packed beds
(minimal plate height is directly proportional to the diameter
of the employed particles[8,9]), the above cited number of
N= 36,000 plates could be achieved in a 10 times shorter col-
umn and in a 100 times shorter time, i.e., slightly over 1 min.
Such a performance would be truly unprecedented and would
for example have tremendous advantages in high-throughput
applications or in the second dimension of 2D LC systems.

The above reasoning explains why the developers of
monolithic columns are pushing towards the synthesis of
columns with ever smaller domain sizes[6]. These attempts
have up to now however been rather disappointing[2,6].
Comparing the domain size reduced plate heights of mono-
liths with a similar porosity always turned out in favour of
the large domain monoliths, i.e., the produced small domain
monoliths do not yield the same linear reduction of the plate
heights as generally observed in packed bed columns.

Although there is an ongoing debate on which characteris-
tic dimension should be selected to properly reduce the plate
heights of silica monoliths[9], the fact that the domain size
reduced plate heights of small domain monoliths are nearly
always larger than those of large domain monoliths[2] is an
irrefutable indication that small domain monoliths are more
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80%) for example have the same pore to skeleton size ratio
of dpor/ds = 2.0 and the same domain to skeleton size ratio
ddom/ds = 3.0, despite of a significant difference in domain
size (ddom= 4.2�m andddom= 3�m, respectively).

As explained by Giddings[11], it is one of the character-
istic features of self-similar chromatographic support struc-
tures that they yield identical reduced plate height curves
provided the reduction is based on one of the characteris-
tic dimensions expressing the self-similarity of the structure.
The reason for this perfect reducibility is that the band broad-
ening in any chromatographic system is always determined
by the same set of differential mass and impulse balances and
boundary condition equations[12]. Making these equations
dimensionless by dividing the spatial coordinates by one of
the reference lengths, the ensuing equations only depend on
a number of dimensionless parameters, the two most impor-
tant of them being the Reynolds number (Re) and the Schmidt
number (Sc). Both parameters furthermore always appear as
their product, which is nothing else but the Peclet number
(Pe) or the reduced velocityν (Pe= ν =Re·Sc). Other param-
eters appearing in the dimensionless equations are the ratio
of the stationary and the mobile zone diffusion coefficient
(Dsz/Dmol) and a number of geometric ratios. In the case of
self-similar packings, these geometric ratios are condition-
ally the same, implying that if the dimensionless mass and
impulse balance equations are solved for two members of
t e
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eterogeneous than their large domain counterparts. T
erstand this, it is first important to note that, at least on
acroscopic level, silica monoliths with a different scale
ith a similar porosity can be considered to be self-sim
elf-similar structures are structures which can be ma
erfectly overlap in a thought experiment by only vary

heir scale. As a consequence, structures can only be
imilar if they have the same ratio between the characte
imensions describing their structure. The two charact

ic dimensions defining the structure of silica monoliths w
similar branch coordination number are the thickness

he length of the skeleton branches[10]. These are in tur
elated to the pore size and the domain size, usually de
s the sum of the pore size and the skeleton branch t
ess[2], two other parameters generally used to desc

he geometry of a monolith. Considering now for exam
he silica rod columns with a near identical external poro
f ε = 0.61–0.63 reported upon in[2], it is found that the
ave near constant pore to skeleton size ratios of respec
.43, 2.31, 2.30 and 2.31 whilst their domain size varies
dom= 5.88�m, overddom= 3.85�m andddom= 2.97�m to
dom= 2.27�m. Since the domain size is the sum of the p
nd skeleton size, it is obvious to find that the ratios of
omain to pore size and the domain to skeleton size are
early perfectly constant over the entire range of dom
izes. In fact they all lie between 1.70 and 1.77 and betw
.43 and 2.29, respectively. A similar domain size inde
ence of the geometrical ratios is observed for the cap
ilica monoliths reported on in[5], where columns MS-
nd MS-D (both with an assumed external porosity of a
he same group of self-similar structures and for the samν,
he obtained solution for the passage of the eluting ban

given dimensionless axial distance will be the same.
dimensionless) second order moment (σ′2) of these peak
s well as the dimensionless plate heighth, which is nothing
lse but the dimensionless axial gradient ofσ′2 (h= ∂σ′2/∂x′),
ill hence also be identical.
Returning now to the above mentioned observation

onoliths with similardpor/ddomandds/ddom-ratio and poros
ty yield reduced plate height curves which tend to increa
he scale of their unit building block (i.e., the domain size)
omes smaller, it can only be concluded that these struc
re not as self-similar as their near-identical averagedpor/ddom
ndds/ddom-ratios would make one to believe. Since the

ios of the averaged characteristic dimensions suggest p
elf-similarity, the lack of agreement must be related to di
nces in the variance around these averages, bringing
rgument on the differences in pore network homogenei
as for example already been remarked in[2,6,9].

In the present study, it is assumed that this incre
eterogeneity is caused by the existence of a domain

ndependent lower limit on the variance of the size of the
ividual skeleton branches and through pores. It is ass

hat this variance does not scale down in proportion to
haracteristic dimensions of the packing, but instead
lays a non-zero lower limit, brought about by local diff
nces in the spinodal decomposition process, and imp
le to surpass by shrinking the scale of the packing. St

ng SEM pictures of silica monolith columns, it seems c
ently impossible to produce silica monoliths with skele
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branches having a thickness and position variance smaller
than a few tenths of a micrometer. On a large domain system
(ddom> 10�m), a size and position variability of this order
only has a negligible influence on the packing homogene-
ity, but on a small domain system, the same size variance
can be expected to have a detrimental effect on the structural
homogeneity.

A similar non-zero lower limit variance effect can also be
expected to eventually limit the performance of lithographi-
cally etched COMOSS[13,14]or porous pillar array columns
[15,16], because even the most advanced current etching pro-
cesses do not offer a perfect pillar size and position accuracy.
The same effect can probably also be used to explain the
apparent difficulties in preparing 1 or 2�m particle packed
bed columns yielding the same small reduced plate heights
as a well-packed 10�m particle bed column, although here
packing efficiency problems also certainly come into play. If
a particle synthesis process is used wherein the diameter of
the particles can be controlled to within±0.1�m, this gives
a size variability of 2% fordc = 10�m particles but already
corresponds to a variability of 20% fordc = 1�m particles.
Plate height increases caused by the existence of a lower limit
size variance barrier can also be expected to influence the
down-scaling of the packed bed columns used in CEC sepa-
rations, since in this case the obtained plate heights are also
still largely determined by packing heterogeneities[17,18].
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2. Considered geometries and numerical methods

As the starting point for the present study, five perfectly
ordered 2D cylinder arrays (cf. the grey coloured cylinder
arrays inFig. 1) with a different domain size but with the
same external porosity (i.e.,ε = 0.6) have been established.
The arrays were drawn using the commercial CAD-software
package Gambit® accompanying the Fluent® solver used to
calculate the velocity fields and the tracer dispersion, as dis-
cussed below. The arrays were constructed by first drawing
an equilateral triangular grid and by subsequently putting a
cylinder on each grid point. As can be noted fromFig. 1A, the
side of the equilateral triangle unit cell of this grid is the obvi-
ous measure for the domain size, for it corresponds to the sum
of the cylinder diameter and the pore neck size, which is the
now generally accepted definition[2] of the domain size in the
monolithic column field. Making a few simple geometrical
calculations, it can easily be verified that the adopted design
rules lead to the following fixed ratio between the domain
and the cylinder size:

ddom

dc
= 1

2

√
2π√

3(1− ε)
(1)

The value of this ratio is independent of the geometrical scale,
and only depends on the value of the external porosity. Putting
ε ral
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Obviously, it might very well be that in practice this low
imit size variance barrier does not show up as a sharpl
imited value but rather manifests itself over a broad trans
ange, depending on the synthesis process and the d
ize. The present work should therefore be considered
s a “what if?”-study and an attempt to visualize the d
ulties one could run into if attempting to further reduce
omain size of monoliths without finding a solution to red

he size variances. To answer this “what if?”-question, a c
utational study has been conducted wherein a series
arently self-similar structures (i.e., with near equal aver
ize ratios) with varying domain size is subjected to a fi
omain size-independent particle size and position varia
o isolate this size variability effect, nonporous structu
re considered, as it is generally accepted that the pa
eterogeneity mainly influences theA-term band broaden

ng and does not influence the stationary zone diffusion
dsorption effects. For a qualitative description of the e
nder study, it is also not needed to consider 3D syst
ertainly some typical 3D shape effects will be missed
y resorting to a 2D lay-out, but since the band broadeni
ach chromatographic process can be reduced to a prob
series-parallel connection of different velocity zones[14],

he general qualitative result of the present 2D study ca
xpected to hold independently of the dimension of the p

em. Studying 2D systems has the advantage that they y
ore direct visual insight and allow for a more simple de
ination of the size variability parameters. In addition,
D approach requires only a fraction of the computati

ime needed for a 3D system.
f

= 0.6 in Eq.(1), it can easily be verified that the equilate
riangular staggering always yields an external porosit
= 0.6 provided the cylinder diameter is exactly 1.5057 ti
maller than the domain size (see ordereddc- andddom-data
n Table 1). This rule was applied to all considered array

All flow domains consisted of 126 particles and wer
articles wide by 21 particles long. The reader should

hat, although the flow domains inFig. 1was rescaled to th
ame domain size, the simulations were carried out on
omains corresponding to the nominal domain size. Fo
mple, the length and the width of the flow domain in
dom= 6�m-case were exactly six times larger than in
dom= 1�m-case (seeTable 1for all employeddc- andddom-
alues). The representation in the constant domain siz
at adopted inFig. 1 has been preferred over the actu
sed constant cylinder size format because it yields a
ompact representation. It also immediately shows tha
stablished ordered arrays are perfectly self-similar, i.e.,
erfectly overlap when brought to the same scale.

In a second step, a series of five heterogeneous a
cf. black coloured cylinder arrays inFig. 1) has been con
tructed by subjecting the position and the diameter o
ndividual cylinders of the ordered arrays to a random va
ion, using the evenly distributed random number gene
f MS® Excell to define the new position and diamete

he individual cylinders. The absolute value of the varia
n the centre position and the diameter of each cylinder

dentical in all different domain size cases. In all cases
aximal displacement of the cylinder centre was plus or
us 0.302�m in both thex-direction andy-direction. The
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Fig. 1. Overlay plot of the considered 2D cylinder arrays (grey circles: perfectly ordered arrays; black circles: heterogeneous arrays) scaled to the same domain
size. The equilateral triangular starting grid used to calculate the position of the cylinders in the ordered array cases is represented as well. Fivedifferent domain
sizes have been considered:ddom= 6�m (A), ddom= 4�m (B),ddom= 2�m (C),ddom= 1.5�m (D),ddom= 1�m (E). The absolute variance on the position and
the size of the individual cylinders is identical in all four cases (see text for more details).

random number generator randomly picked any of the pos-
sible values lying between the two extreme values with an
equal probability. The diameter of the cylinders was in all
domain size cases varied in an interval of 0.133�m around
the mean particle diameter. Introducing the heterogeneity

in this way, it is ensured that the average domain size of
each heterogeneous array will still be very close to the do-
main size of its corresponding ordered array and that the
size and position variances are independent of the domain
size.

Table 1
Domain, cylinder diameter and pore size values for the five different considered domain sizes

Domain size (�m) Ordered arrays Heterogeneous arrays

dc (�m) dpor (�m) dc (±σ) (�m) dpor (±σ) (�m) ddom (±σ) (�m)

1 0.664 0.336 0.662 (±0.078) 0.361 (±0.211) 1.023 (±0.225)
1.5 0.996 0.504 0.994 (±0.078) 0.508 (±0.208) 1.502 (±0.222)
2 1.328 0.672 1.326 (±0.078) 0.674 (±0.217) 2.000 (±0.231)
4 2.657 1.344 2.654 (±0.078) 1.330 (±0.212) 3.984 (±0.226)
6 3.985 2.015 3.982 (±0.078) 2.008 (±0.206) 5.990 (±0.220)

The values given for the heterogeneous arrays are the average values calculated from the measured size distributions. The numbers between brackets are the
standard deviations.
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The numerical methods used to compute the flow field and
the species dispersion, as well as the methods employed to
calculate the plate height values from the recorded peak pro-
files are fully identical to those described in previous papers
of our group[10,15,19,20]and are therefore not recaptured
here. We will suffice by remarking that a commercial Com-
putational Fluid Dynamics solver has been used (Fluent®

6.1.22, Fluent NV, Belgium) and that the accuracy of all pre-
sented calculations has been checked by varying the time step
and the grid size.

To quantify the degree of packing heterogeneity of the dif-
ferent systems, distributions of the pore neck size (measured
as the shortest distance between two neighbouring cylinders)
and the cylinder diameter have been established. For the
pore size distribution, 100 different shortest distance lines
were drawn between two adjacent cylinders in random direc-

tions on jpg-file reproductions of the flow domains in Adobe
Photoshop®. The lengths of the individual lines were subse-
quently determined using Imaq Vision Builder 5.0 software,
directly providing the desired length distribution in an output
file. In this way, the pore sizes are determined in a manner
which is fully similar as to one would do when analysing a
SEM picture of a real monolithic column. The distributions of
the (exactly known) cylinder diameters could be established
directly from the MS® Excell file used to generate them.

3. Results and discussions

A comparison of the grey and black coloured cylinder ar-
rays inFig. 1directly allows to appreciate the strong increase
in packing heterogeneity which follows upon a decrease of

F
l
(

ig. 2. Computed velocity fields in a perfectly ordered array (A) and in the fi
inear velocity. The colour scaling is proportional to the localu/umean-value, withu
see text for colour details).
ve differently sized heterogeneous arrays (B–F). All cases have the same mean

meandefined as the largest local velocity encountered in the given domain
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the domain size in the presence of a domain size indepen-
dent lower limit on the cylinder size and position variance.
The increased heterogeneity of the small domain structures
is also clearly reflected in the calculated pore and cylinder
size standard deviation values (Table 1). Whereas in absolute
values these standard deviations are nearly perfectly identical
in all five considered domain size cases (as could be expected
from the rules used to establish the heterogeneous arrays), in
relative terms, this standard deviation goes from a relatively
small 1.96% (for the cylinder size) and 10.26% (for the pore
size) in the 6�m domain case to respectively 11.78% and
58.45% in the 1�m domain case.Table 1also shows an ex-
cellent agreement between the domain sizes of the perfectly
ordered arrays and those of the heterogeneous arrays. Since
the perfectly ordered arrays are perfectly self-similar, the het-
erogeneous arrays could, if the qualification would be based
on the average characteristic dimensions (as is usually done),
hence also be considered to be self-similar.

The velocity fields for the different heterogeneous arrays
are however not self-similar at all (Fig. 2). To emphasize the
differences between the different scale-structures, the com-
puted velocity magnitude fields have been normalized to the
mean local velocity magnitude (which was anyway identical
in all the represented cases) and the colour scale was fixed
betweenu/umean= 0 andu/umean= 4. In this way, the zones
with the largest velocities are marked red and yellow (roughly
u s are
m
c es in
t eous
a are
p het-

erogeneous arrays with the smallest domain size (Fig. 2D–F)
is divided in only a few preferential flow paths where the ve-
locity is much larger than in the remainder of the packing.
The presence of these preferential flow paths in turn obvi-
ously has a dramatic impact on the band broadening, as can
clearly be assessed fromFig. 3.

Quantifying the band broadening in all different consid-
ered ordered and heterogeneous array cases by calculating the
corresponding plate heights over a range of different veloci-
ties yields the series of van Deemter curves shown inFig. 4.
For the ordered array cases (dashed curves), the normal be-
haviour of self-similar systems is noted, i.e., the minimal plate
heights decrease linearly with the domain or cylinder size.
The difference with the van Deemter curves for the heteroge-
neous arrays (full lines) is striking. Not only do the curves lie
significantly higher, the lowest plate height curve no longer
corresponds to the packing with the smallest domain size
but to one with an intermediate value, i.e., withddom= 2�m.
This result implies that any manufacturing method produc-
ing a residual, domain-size independent minimal size and
position variance will be marked by the existence of a lower
plate height limit which cannot be passed by decreasing the
domain size of the packing structure.

In Fig. 5, the van Deemter curves shown inFig. 4 are
reconsidered in dimensionless coordinates. Whereas the or-
dered array cases all reduce to the same curve (dashed line),
i ge-
n ard”
c their
a mall-
e neity,
c

F f the fl e di
h m (D)
> 3umean), whereas the zones with the smallest velocitie
arked blue (roughlyu<umean/5). Going fromFig. 2A–F, it

an readily be noted that, whereas all flow through por
he perfectly ordered and the largest domain heterogen
rray (Fig. 2A and B) have a nearly identical status and
ermeated with the same intensity, the flow through the

ig. 3. Plot of a species plug shortly after its introduction at the inlet o
eterogeneous cylinder arrays:ddom= 6�m (B), ddom= 2�m (C),ddom= 1�
n agreement with their perfect self-similarity, the hetero
eous array cases clearly deviate from this “perfect stand
urve, although they all have the same ratios between
verage characteristic dimensions. The cases with the s
st domain size, i.e., the cases with the largest heteroge
learly yield the largest deviation. The use ofddom-reduced

ow domain for the perfectly ordered array case (A) and for three of thfferent
.
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Fig. 4. van Deemter plots of the plate heights calculated for the five consid-
ered domain sizes (ddom= 6�m (�), 4�m (�), 2�m (�), 1.5�m (�), 1�m
(×)) in the ordered (dashed lines) and the heterogeneous array cases (full
lines).

plate heights hence yields a very sensitive means to assess
the degree of heterogeneity of a given packing. The largest
domain size case, wherein the presence of size variance is
nearly invisible to the eye, also already yields a deviation
from the perfectly ordered array curve.

It should be noted that the plate height values in
Figs. 4 and 5only relate to theA- andB-term band broad-
ening, and that in real porous columns the small domain
monolith heterogeneity effect will be tempered (but not elim-
inated!) by the band broadening contributions stemming from
the stationary zone mass transfer resistance. It can, however,
be inferred from the additive effect of the different band
broadening contributions[11] that the main conclusion of
Figs. 4 and 5also holds for porous structures.

Another remark to be made, is that the present results
are for a system with an external porosity ofε = 0.6, cor-
responding roughly to the external porosity in commercial
wide-bore silica monolith columns. It is obvious that, if the
same fixed minimal skeleton size and position variance would
prevail, packings with a smaller porosity (i.e.,ε < 0.6) will

F
T te
h

Table 2
Knox parameters obtained after fitting the domain size reduced plate height
data shown inFig. 5to Eq.(2)

Domain size (�m) A (–) B (–) C (–)

1 0.381 1.333 0
1.5 0.196 1.388 0
2 0.119 1.396 0
4 0.050 1.466 0
6 0.031 1.530 2.04× 10−6

Uniform arrays 0.015 1.505 7.80× 10e−5

display an even strongerA-term band broadening than in the
present case, whereas packings with a larger porosity (say
ε = 0.8–0.9) would be less affected.

Fitting the reduced plate height curves shown inFig. 5
with the frequently used empirical Knox-equation:

h = Aν1/3 + B

ν
+ Cν (2)

it is found that the increased heterogeneity of the small do-
main structures is mainly reflected in theA-term band broad-
ening (cf.Table 2), as could be expected from the physical
meaning of the latter[9]. Going from the perfectly ordered
array case, whereA= 0.015, to the maximally heterogeneous
case withddom= 1�m, whereA= 0.38, a near 25-fold in-
crease in theA-term band broadening is observed. TheB-term
constant values vary much less, and theC-term constant val-
ues are so small compared to theA-term contribution that in
most cases this value had to be fixed to zero in order to prevent
the fitting algorithm to produce physically unfeasible nega-
tive C-values. The poor fitting for the smallest domain size
cases reflects the fact that then= 1/3 Knox-equation only has
empirical grounds. Fittings with freen yielded much better
fittings, but since the exponentn varied in a rather random
manner from case to case we preferred to stick to then= 1/3
model.

Fig. 6shows a plot of theA-term constant and the relative
d in
s s run
n ties.
I main
s is
t

F
d

ig. 5. Reduced plate height curves based onddom(same symbols as inFig. 4.
he full and dashed lines are obtained by fitting Eq.(2) to the computed pla
eight data.
omain size variance (σ2
dom/d2

dom) as a function of the doma
ize for the different heterogeneous array cases. Both line
early parallel, indicating a tight link between both quanti

n both cases, a vertical asymptote is reached for a do
ize just belowddom= 1�m. It is thought that making th
ype of plots, i.e., plotting eitherA versusddom or σ2

dom/d2
dom

ig. 6. Dependency of theA-term constant (�) and (σdom/ddom)2 (�) on the
omain sizeddom.
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versusddom for a series of columns produced with a similar
method but with different domain size, could be very useful
to determine the presence of a lower limit size variance bar-
rier. If Aandσ2

dom/d2
dom would remain more or less constant,

this would indicate that the size variance decreases together
with the domain size, allowing to conclude that the employed
synthesis method does not have a fixed variance size barrier.
On the other hand, ifAandσ2

dom/d2
dom would display a sharp

increase, this would then be a clear indication of the exis-
tence of a lower limit size variance barrier. It can however be
expected that theσ2

dom/d2
dom-values will reach a maximum

aroundσ2
dom/d2

dom = 1, since this represents the case where
the standard deviation is as large as the domain size. From
the tight link betweenA andσ2

dom/d2
dom, it suffices of course

to measure only one of both parameters. The determination
of A, requiring only a fit of the van Deemter data with Eq.
(2) obviously is much easier than the determination ofσ2

dom
which requires the use of some optical scanning technique in
combination with a geometrical reconstruction routine. The
latter method can however be assumed to be more accurate
than theA-term constant fitting method.

4. Conclusions
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as a function of the experimental conditions (duration and
intensity of the reagent mixing, temperature control,. . .) will
undoubtedly give clues on how the current monolith manu-
facturing methods could be improved. For this purpose, mi-
croscopic visualization methods, like for example the laser
scanning confocal microscopy (LSCM) method proposed in
[21], will become indispensable research tools. Introducing
more vigorous mixing methods such as ultrasonic[22] or
chaotic advection[23] mixing in microfluidic channels pro-
ducing the smallest possible mixing eddies could be one of
the possible solutions to improve the size variability of small
domain monoliths.

5. Nomenclature

A, B, C Knox equation constants (–)
dc cylinder diameter (m)
ddom domain size, seeFig. 1(m)
dpor pore size (m)
dref general characteristic dimension (m)
ds skeleton diameter (m)
Dmol molecular diffusion coefficient in mobile zone

(m2/s)
D molecular diffusion coefficient in stationary zone

h
H
L
N
P
R
S
u
u so-

u
u ity

x nce

G

.
η

ν

σ

σ

A

rant
( ch-
F liza-
Given that the pore and skeleton size variance in m
ithic columns is directly related to the stochastic natur
he spinodal decomposition process, it is not unreasona
ssume that this variance will not scale down in propor
ith the domain size, but will, from a given domain size

emain at a given non-zero level, independently of the do
ize. Computing theA-term band broadening in a series of
arently self-similar structures (same mean geometric r
nd same porosity) with decreasing scale, the present
utational study shows that the existence of such a min
ize variance barrier will lead to a lower limit van Deem
urve and that any attempt to pass this lower limit by
her decreasing the domain and skeleton size without b
ble to co-reduce the size variance will inevitably resu
n increase instead of a further decrease of the plate he
lthough the existence of such a lower limit on the size v
nce has not been investigated yet, the concept can be

o understand the major difficulties encountered when tr
o synthesize high performance small domain monoliths

The present results indicate that the key to obt
ng high quality small domain size monoliths (say w
�m <ddom< 3�m) will lie in the ability to reduce the sta
ard deviation on the size and the position of the skel
ranches to below 0.1�m or even 0.05�m and that extensiv
tudies of the relationship between the exact process c
ions and the structural variances will become absolutely
cal in the next development stages. Column preparatio
orts should therefore not only mention average skeleto
ore sizes, but should also include variance data. Condu
ystematic studies wherein the size variability is quant
.

d

sz
(m2/s)
reduced theoretical plate height (h=H/dref)
height equivalent of a theoretical plate (m)
length op the separation column (m)
number of plates

e Peclet number
e Reynolds number,Re=u·dref/Dmol (–)
c Schmidt number,Sc=η/Dmol (–)

local interstitial mobile phase velocity (m/s)
0 mean velocity of permeating, but non-retained

lute (m/s)
mean mean interstitial mobile phase velocity (m/s)
opt optimal mean interstitial mobile phase veloc

(m/s)
′: axial distance in the column divided by refere

dimension (–)

reek symbols
ε external column porosity (–)

kinematic viscosity (m2/s)
reduced fluid velocity, based onu0 (=u0·ddom/Dm)

′2 dimensionless second order moment (–)
por standard deviation on the pore size (m)
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